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Preshaping of the input is a well known technique to reduce the vibration in a flexible
structure. In this paper, inputs in the form of pulse sequences that are able to reduce the
residual vibration in overhead crane are presented. If the exact natural frequency and
damping ratio of the system are known, then the residual vibration can be eliminated
completely. However, additional constraints can be imposed to incorporate some
robustness in the system to variations in the natural frequency and damping ratio for
practical implementation. Simulation results and experimental tests show that the inputs
developed here are effective in moving the system with no or little residual vibration. In
addition, the suggested inputs with robustness incorporated show marked insensitivity to
errors in natural frequency and damping ratio estimates.
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1. INTRODUCTION

Vibration is a serious problem in mechanical systems that are required to perform precise
motion in the presence of structural flexibility. Examples of such systems range from the
positioning of a disk drive’s head to large space structures, flexible manipulators and
overhead cranes. In most cases, the residual vibration at the end of a move is the most
detrimental and the extent of the residual vibration limits the performance of the system.
The effective use of such systems can only be achieved when such vibration can be properly
handled. As a result, there is active research interest in finding methods that will eliminate
vibration for a variety of mechanical and structural systems.

Traditional closed loop feedback can be used to reduce end-point vibration (see, for
example, [1, 2]). The closed loop system will then benefit from the inherent advantages of
feedback, such as insensitivity to parameter variations, noise attenuation and disturbance
rejection. However, such a feedback system can be difficult to implement in practice, as
it requires reliable sensor information for feedback. Such sensor information may not be
so easily available. For example, in the overhead crane problem, it is not a trivial task (nor
practical) to devise a sensor to measure the position at the end-point. Another approach
is input command shaping, in which the input is preshaped such that the resulting residual
vibration is reduced or eliminated. These methods are popular in industry because they
are relatively simple to implement and do not require additional sensor information. In
some cases, it is possible to use the preshaped input together with closed loop feedback
strategies to enjoy the benefits of both systems [3, 4].

Input command shaping involves altering the shape of the actuator’s command so that
residual vibration is reduced. Such a command shaping technique was first introduced in
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the work of Smith [5, 6], through his Posicast control scheme. In that scheme, a step
input is divided into two smaller steps, with the second step delayed in time. The idea
is to apply the second step so as to cancel the vibration induced by the first. If the
steps are chosen properly, the resulting system will have considerably reduced
vibration. However, the scheme was not considered to be suitably robust for practical
application.

Many researchers have worked in this area. Aspinwall [9] shaped the forcing function with
a sine series expression to minimize the residual response of a flexible structure over a band
of frequencies. Farrenkof [7] developed profiles that minimize a structural excitation
criterion for a spacecraft with flexible appendages. Swigert [8] used a performance index that
minimizes the sensitivity of vibration to error in plant parameter estimates. Meckl and
Kinceler [10] considered ramped sinusoids as basis functions, so as to minimize excitation
over a range of frequencies surrounding the system natural frequency. The coefficients of the
basis functions are chosen to minimize the difference between the ramped sinusoids and the
rigid body minimum time solution. Jones et al. [11] applied a constant acceleration profile
to damp oscillations in objects transported by an overhead crane. By delaying a constant
acceleration input by a certain time, the transported object is then able to move during the
constant velocity stage without vibration. Then the same strategy is applied to decelerate
the transported object so that the residual vibration can be reduced. Although this method
can be applied to systems with large amplitudes of oscillation, it can only be used on single
mode systems without damping, and may not be suitably robust for practical
implementation.

Singer and Seering [12] developed an elegant input shaper using impulse sequences
to cancel the residual vibration. The impulse sequence is convolved with the user’s
desired input to produce a shaped command for the system. The resulting shaped
command has the same vibration reduction properties as the impulse sequence. In
their method, the natural frequency and damping ratio of the system need to be known
exactly, but additional impulses can be introduced to reduce the sensitivity of these
parameters.

In this paper, a series of pulse sequences are proposed that can produce damped motion
and reduce the residual vibration. The user has the choice of pulse sequences to select,
depending on the requirements. Some pulse sequences possess robustness to variations in the
parameters of the system. While no guarantee of time optimality is made, the results (as
measured by the residual vibrations and the time taken) compare well with existing methods.
The suggested input profiles are easy to design and implement and, in fact, could also be used
as the initial guess for any optimal solution of the problem.

The paper is organized as follows. A model of an overhead crane system is presented in
section 2. The input forcing function and the conditions for zero residual vibration are
shown in section 3. On the basis of sections 2 and 3, a two-pulse sequence, a four-pulse
sequence and a six-pulse sequence are developed in section 4. A brief description of the
impulse shaper method of reference [12] is given in section 5. Simulation results and
discussion for the system are presented in section 6. The experimental set-up and results are
shown in section 7. The conclusions are presented in section 8.

Notation. In the derivation below and the rest of this paper, the function 1(t− ti ) is
equal to 1 for te ti and 0 otherwise; the function int(x) means to take the integer part
of x; for example, int(2·67)=2; an asterisk denotes convolution; and all the
variables beginning with L are positive integers. In this paper, amax and vmax denote
the maximum acceleration and velocity attainable by the rigid body system, and z is
the desired rigid body motion. With this assumption, the inequality ze v2

max /amax can always
be satisfied.
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2. SYSTEM MODEL

The pulse sequence developed here can be used to reduce the residual vibration of any
time-invariant second order linear system. As a specific example, a model of an overhead
crane as shown in Figure 1 is considered. It consists of a motorized platform moving in
the horizontal direction with a cable and point load attached. The equations of motion
governing the system are given by

(M+m)ẍM −ml(u� cos u− u� 2 sin u)=F, (2.1)

u� +
g
l

sin u=
ẍM

l
cos u, (2.2)

where M and m are the masses of the cart and the load respectively, xM (t) is the horizontal
displacement of the platform, l is the length of the rope, F is the force on the cart and
u(t) is the angular displacement. Equations (2.1) and (2.2) are non-linear coupled
equations. The approach taken here is to consider only equation (2.2) and to treat the
acceleration, ẍM (t), of the cart as the input. For a desired acceleration profile, u(t), u� (t)
and u� (t) can be obtained numerically from equation (2.2) and hence F(t) can be found
from equation (2.1).

Using this approach, and assuming the angular displacement of the pendulum to be
small so that standard linearization of equation (2.2) is possible, the equation of motion
becomes

u� +
g
l
u=

ẍM

l
. (2.3)

With the damping effect incorporated, equation (2.3) can be written as

u� +2jvn u� +v2
n u= ẍM /l, (2.4)

where j is the damping coefficient and vn =zg/l is the natural frequency of the system.
Since u is assumed to be small such that Dx= l sin u= lu, equation (2.4) can also be
written as

Dx� +2jvn Dẋ+v2
n Dx=Du, (2.5)

Figure 1. The model of an overhead crane.
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where D is a constant of the system. Equation (2.5) is the general equation of motion of
a time-invariant second order linear system excited by a forcing function u(t).

The basic problem now is to design an input profile that will move the cart from one
operating point to another in the shortest time possible with zero residual vibration. The
system is assumed to be at rest initially. In addition, it is also desirable that there should
be little or no vibration during the movement.

3. INPUT FORCING FUNCTIONS AND SUPPRESSION OF RESIDUAL
VIBRATION

In this paper, the cart is assumed to be a computer-controlled unmanned platform,
where the comfort of the ride is not a significant factor. Hence, u(t) can be chosen as a
non-uniform piecewise step sequences given by

u(t)= ẍM (t)= s
n

i=1

ai · 1(t− ti ), (3.1)

where ti q ti−1, i=2, 3, . . . , n, and ai is a constant amplitude. It can be seen later that
such a choice of u(t) will lead naturally to a rectangular or ‘‘bang–bang’’ forcing function,
and it is well known that such inputs are time-optimal solutions. Of course, it is also known
that such inputs will excite the higher order modes and give rise to a highly oscillatory
response, but it will be shown that, by proper selection of the step sequences, the vibration
can be reduced substantially.

The response of the time-invariant second order linear system given by equation (2.5)
to the step sequence (3.1) can be shown to be

Dx(t)= s
n

i=1

Dxi (t)=
D
v2

n
s
n

i=1

ai 61−
1

z1− j2
e−jvn (t− ti ) cos [vd (t− ti )− d]7 · 1(t− ti )

(3.2)

where d=tan−1 (j/z1− j2) and vd =vn z1− j2 is the damped natural frequency of the
system. In particular, the response at the end of the input sequence, i.e., the vibration for
tq tn or residual vibration, is of interest. For all time tq tn , 1(t− ti )=1 and the resulting
response is given by

Dx(t)= s
n

i=1

Dxi (t)=
D
v2

n
s
n

i=1

ai 61−
1

z1− j2
e−jvn (t− ti ) cos [vd (t− ti )− d]7. (3.3)

In order to achieve zero residual vibration, it is necessary that, for all tq tn ,

Dx(t)= s
n

i=1

Dxi (t)=
D
v2

n
s
n

i=1

ai 61−
1

z1− j2
e−jvn (t− ti ) cos [vd (t− ti )− d]7=0. (3.4)
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Figure 2. An input pulse.

For equation (3.4) to be true, the following conditions must be satisfied:

s
n

i=1

ai =0, (3.5)

Ax =− s
n

i=1

ai e−jvn (tn − ti ) cos vd (tn − ti )=0, (3.6)

Ay = s
n

i=1

ai e−jvn (tn − ti ) sin vd (tn − ti )=0. (3.7)

Equations (3.5), (3.6) and (3.7) are known as the zero residual vibration constraints, i.e.,
if these conditions are satisfied, there will be zero residual vibration. Note that these
constraints depend on precise knowledge of vn and j. In order to make the system more
robust, and hence less sensitive to variations in the natural frequency of the system,
additional constraints are obtained by setting the partial derivatives of equations (3.6) and
(3.7) with respect to vn to be equal to zero. This means that

1Ax

1vn
= s

n

i=1

ai (tn − ti ) e−jvn (tn − ti ){j cos vd (tn − ti )+z1− j2 sin vd (tn − ti )}=0,

(3.8)

1Ay

1vn
= s

n

i=1

ai (tn − ti ) e−jvn (tn − ti ){−j sin vd (tn − ti )+z1− j2 cos vd (tn − ti )}=0.

(3.9)

Similarly, for robustness to variations in the damping ratio, the partial derivatives of
equations (3.6) and (3.7) with respect to damping ratio can be found and equated to zero.
It turns out that the same relations, equations (3.8) and (3.9), are obtained. This is useful,
because it means that when the input sequence is insensitive to error in natural frequency
estimates, it is also insensitive to error in damping ratio estimates. Equations (3.8) and (3.9)
are known as the robustness conditions.

Constraint (3.5) can be eliminated if the input sequence is chosen as

a2k =−a2k−1, for k=1, . . . , N. (3.10)

where n=2N. Such a choice of step sequence will result in a pulse sequence; every two
steps constitute a pulse, as shown in the Figure 2. It is easy to show that such a pulse
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sequence will automatically satisfy the constraint (3.5). Also, it is assumed that the
duration of every pulse in the pulse sequence is the same; i.e.,

t2k − t2k−1 =Dt. (3.11)

Therefore, the zero residual vibration constraints without robustness in the natural
frequency and damping ratio of the system for a pulse sequence input are equations (3.6)
and (3.7); the zero residual vibration constraints with robustness in the natural frequency
and damping ratio of the system for a pulse sequence input are equations (3.6), (3.7), (3.8)
and (3.9).

In addition, equations (3.6) and (3.7) are equivalent to

A2 =A2
x +A2

y =0, (3.12)

while equations (3.8) and (3.9) are equivalent to

B=(1Ax /1vn )2 + (1Ay /1vn )2 =0. (3.13)

In this case, the zero residual vibration constraint without robustness in the natural
frequency and damping ratio of the system for a pusle sequence input is equation (3.12),
while the zero residual vibration constraints with robustness in the natural frequency and
damping ratio of the system for a pulse sequence input are equations (3.12) and (3.13).

4. DESIGN OF PULSE SEQUENCE

In this section, three types of pulse sequences input—namely, the two-pulse, three-pulse
and six-pulse sequences—are considered. It will first be shown that the two-pulse sequence
can achieve damped motion, and the result is then extended to point-to-point motion with
zero residual vibration using the six-pulse sequence. In the analysis, the underlying
practical and reasonable assumption is that one would want the system to make full use
of its available energy, so that the solution can be near optimal. Hence, it is assumed that
the input acceleration should try to reach the maximum acceleration possible for the
system. In deciding between possible solutions, it is also assumed that the velocity of the
input should be as large as possible in order to minimize the time taken for a move.

4.1.     -   

Consider a two-pulse sequence as shown in Figure 3. It will be shown that such a
sequence can be used to achieve damped motion without robustness. By damped motion,
we mean motion that is free from oscillation. Since the vibration caused by the first pulse
will decay by a factor of e−jvn tc after time tc , in order to cancel the vibration, it is natural
to assume that the amplitude of the second pulse is multiplied by a factor of kc =e−jvn tc.

Figure 3. The acceleration profile of the two-pulse sequence for damped motion.
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Substituting this pulse sequence into the zero residual vibration constraint (3.12), one
obtains

A2 =A2
x +A2

y

=4a2k2
c cos2 vd tc

2
[e−2jvn Dt −2 e−jvn Dt cos (vd Dt)+1]2 =0.

If j$ 0, then [e−2jvn Dt −2 e−jvn Dt cos (vd Dt)+1]2 $ 0, and therefore

cos
vd tc

2
=0,

which means that tc =(L−0·5)T where T=2p/vd and L is an integer. If j=0, then
A2 =8a2 cos2 (vd tc /2) [1−cos (vd Dt)]2 =0, and so (a) cos (vd tc /2)=0, which means
that tc =(L−0·5)T, or (b) 1−cos (vd Dt)=0, which means that Dt=L'T where L' is
an integer. Therefore, the zero vibration condition for the two-pulse sequence is

tc =(L−0·5)T when j$ 0, (4.1)

or

tc =(L−0·5)T or Dt=L'T when j=0. (4.2)

This means that, for this pulse sequence, damped motion can be obtained either by
varying the time delay for the second pulse or, when j=0, by varying the width of the
pulse. However, if one is to vary the width of the pulse, then it is possible to obtain very
narrow pulses and the system may not reach its maximum velocity. Hence the condition
Dt=L'T is deemed too restrictive to be useful in practice and is thus ignored. Instead,
the condition tc =(L−0·5)T may be more useful.

To see if the latter expression for tc is able to satisfy the robustness constraint (3.13),
equation (4.1) is substituted into equation (3.13), to give

B=(1Ax /1vn )2 + (1Ay /1vn )2

= k2
c a2(L−0·5)2T2[1−2 e−jvn Dt cos vd Dt+(e−vn Dt)2]. (4.3)

If j$ 0, then B is not equal to zero.
Therefore, when j$ 0, a two-pulse sequence which will result in damped motion with

robustness cannot be found.
If j=0, from equation (4.3) one obtains

B=2a2(L−0·5)2T2[1−cos vd Dt]=0

so that 1−cos (vd Dt)=0, which means that Dt=L'T.
This means that, for a two-pulse sequence, it is possible to have a robust solution if the

duration of the pulse is varied. However, as was mentioned earlier, such a solution may
result in a very narrow pulse, and that would prevent the system from reaching its
maximum velocity. Hence, in this formulation, it is assumed that the two-pulse sequence
is unable to provide robustness and, instead, other pulse sequences will be used to provide
the desired robustness. In the following, the result of this two-pulse sequence will be used
to find the response of the system to a four-pulse and subsequently a six-pulse sequence.

4.2.     -  -   

Consider the four-pulse sequence shown in Figure 4. It will be shown that such a
sequence can be used to achieve damped motion with robustness. As before, one lets
kc =e−jvn tc and ke =e−jvn te. From the previous discussion on the two-pulse sequence, it is
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Figure 4. The acceleration profile of the four-pulse sequence for damped motion.

known that if tc =(L−0·5)T, there will be no vibration after the second pulse and the
fourth pulse. In order for the system to be robust, this four-pulse sequence should satisfy
equation (3.13) to achieve zero residual vibration with robustness.

Substituting tc =(L−0·5)T into equation (3.13), one obtains

B=4k2
c k2

e a2(L−0·5)2T2 cos2 vd
te

2
[1−2 e−jvn Dt cos vd Dt+(e−vn Dt)2]=0.

If j$ 0, then since [1−2 e−jvn Dt cos vd Dt+(e−vn Dt)2]$ 0, and therefore cos (vd te /2)=0,
which means that te =(L'−0·5)T. If j=0, then

B=8a2(L−0·5)2T2 cos2 vd
te

2
[1−cos vd Dt]=0,

and so (a) cos (vd te /2)=0, which means that te =(L'−0·5)T where L' is an integer, or
(b) 1−cos (vd Dt)=0, which means that Dt=L0T, where L0 is an integer.

Again, as before, the solution Dt=L0T is discarded. Hence if tc =(L−0·5)T and
te =(L'−0·5)T, then the resulting system will exhibit damped motion with robustness.

A special case of this pulse sequence is when

tc =(L−0·5)T= te =(L'−0·5)T

and

kc = ke = k=e−jvn (L−0·5)T.

In that case, a three-pulse sequence actually resulted, as shown in Figure 5. This pulse
sequence will also result in zero residual vibration with robustness. The disadvantage of
this sequence is that maximum acceleration is only attained for the first or the second pulse.

Figure 5. The acceleration profile of three-pulse sequence for damped motion.
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Figure 6. The proposed six-pulse sequence with robustness. (a) Acceleration profile; (b) velocity profile.

However, this pulse sequence is introduced because it is robust, can be applied to system
with damping, and can be easily compared to the impulse shaper method of [12].

4.3. -   

In the previous section, two-, three- and four-pulse sequences are shown that are able
to achieve damped motion. In practice, to cause some specific rigid body motion, the rigid
body velocity must start and end at zero. In that case, the forcing function must have equal
positive and negative areas. Also, the optimal acceleration time history should be
symmetrical about the mid-point in time. On the basis of these considerations, one can
design two-pulse or four-pulse sequences for that purpose. However, it can be shown that
such input sequences will not possess robustness for system with damping and hence, are
of less interest. Therefore, a six-pulse sequence as shown in Figure 6(a) is introduced. From
the results of section 4.2, the six-pulse sequence will result in zero residual vibration with
robustness when k=e−jvn (L6 −0·5)T, with or without damping in the system. The velocity
profile of this pulse sequence is shown in Figure 6(b). For the input sequence shown, the
velocity of the cart at the end of the input

V(tf )= aDt(1+2k+ k2 −1−2k− k2)=0 (4.4)

and so it satisfies the constraint that the final velocity should be zero, so that the rigid body
motion is finally at rest. It can be seen that if td q 0, there will be no vibration during the
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constant velocity stage (after the third pulse) and, therefore, damped motion is achieved
during that motion.

In order that the second pulse happens after the first pulse and that the time of the
constant velocity stage between the first pulse and the second will be no more than one
period of the system, the following constraints should be satisfied:

(L6 −0·5−1)TQDtE (L6 −0·5)T, (4.5)

where

Vmax

2·25amax
EDt=

Vmax

amax 0 1
2k

+1+0·5k1
E Vmax

2amax
if 2ke 1, (4.6a)

so that the second and the fifth pulses reach the maximum allowable acceleration and

Vmax

2·25amax
EDt=

Vmax

amax (1+2k+ k2)
EVmax

amax
, if 2kE 1, (4.6b)

which means that the first and the fourth pulses reach the maximum acceleration.
Using inequalities (4.5) and (4.6), it is quite easy to find the smallest integer L6. There

are two special cases that enable us to find L6 directly.
Case (a):

int 0 Vmax

2·25Tamax
+1·51=int 0 Vmax

Tamax
+1·51.

From inequalities (4.6), we know that

Vmax

2·25amax
EDt=

Vmax

amax (1+2k+ k2)
EVmax

amax
,

and therefore

int 0 Vmax

2·25Tamax
+1·51EL6 E int 0 Vmax

Tamax
+1·51. (4.7a)

If

int 0 Vmax

2·25Tamax
+1·51=int 0 Vmax

Tamax
+1·51,

then

L6 = int 0 Vmax

2·25Tamax
+1·51=int 0 Vmax

Tamax
+1·51. (4.7b)

Case (b): j=0. If j=0, Dt=Vmax /2amax , and then from inequality (4·5) we obtain

L6 = int 0 Vmax

2Tamax
+1·51. (4.7c)
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Once L6 is decided, then

k=e−jwn (L6 −0·5)T (4.8)

and

Dt=
Vmax

amax 0 1
2k

+1+0·5k1
if 2ke 1 (4.9a)

or

Dt=
Vmax

amax (1+2k+ k2)
if 2kQ 1. (4.9b)

Since the distance travelled, Z=Vmax tw , therefore

tw =Z/Vmax (4.10)

and

tf = tw +2(L6 −0·5)T+Dt. (4.11)

Expressions (4.5), (4.7), (4.8), (4.9), (4.10) and (4.11) are used to design the six-pulse
sequence to give a system with zero residual vibration with robustness for a system with
or without damping.

5. SYSTEM WITHOUT PRESHAPING AND PRESHAPING USING AN IMPULSE
SEQUENCE

5.1.   

It is well known that the time-optimal solution for a rigid body motion subjected to
acceleration and velocity constraints is a rectangular or ‘‘bang–bang’’ input. For
sufficiently long motion such that maximum velocity can be reached, the acceleration input
and velocity profiles are given in Figures 7(a) and 7(b) respectively.

Using such an input profile, we have

Dt=Vmax /amax , (5.1)

and

tw =Z/Vmax (5.2)

Figure 7. ‘‘Bang–bang’’ input. (a) Acceleration profile; (b) velocity profile.
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Figure 8. The impulse shaper method without robustness.

where, as before, Z is the distance of the desired motion. Then, the total time taken for
the rigid body motion is

tf = tw +Dt=
Z

Vmax
+

Vmax

amax
. (5.3)

Since vibration is not considered, such input is the theoretically fastest time taken to
complete a motion. Of course, since the vibration is not handled, the resulting motion will
cause residual vibration in most cases.

5.2.     

Singer and Seering [12] have developed an elegant impulse shaper method to reduce
system vibration. They use a two-impulse sequence as shown in Figure 8 for the non-robust
case, and a three-impulse sequence as shown in Figure 9 for the robust case (where
k'= e−0·5jvn T). The impulse sequences are not used to drive the system directly. Instead,
they are convolved with a rigid body acceleration profile as shown in Figure 7(a) to
generate new acceleration profile that is used to drive the system. The resulting system after
convolution will result in the same distance travelled with the same end velocity as the
original desired rigid body motion, but with substantially reduced residual vibration.

From Figure 9, the time taken to complete the motion for the impulse shaper with
robustness is given by

t2
f = tw +T+Dt=

Z
Vmax

+T+
Vmax

amax
. (5.4)

Looking at Figure 9, it can be seen that the shape of the input is similar to the six-
pulse sequence with robustness in section 4.3. Compared with the six-pulse sequence in

Figure 9. The impulse shaper method with robustness.
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section 4.3, if one denotes the time taken for the six-pulse sequence with robustness as t6
f ,

then

t2
f − t6

f =−2(L6 −1)T+01−
1

1+2k+ k21 Vmax

amax
if 2kQ 1, (5.5a)

t2
f − t6

f =−2(L6 −1)T+01−
1

1/2k+1+0·5k21 Vmax

amax
if 2ke 1. (5.5b)

If L6 =1, then the time difference is

t2
f − t6

f =01−
1

1+2k+ k21 Vmax

amax
if 2kQ 1, (5.6a)

t2
f − t6

f =01−
1

1/2k+1+0·5k21 Vmax

amax
if 2ke 1. (5.6b)

In this case, the proposed method results in a shorter time. If one modifies the six-pulse
sequence with robustness developed in section 4.3 by letting L6 =1 and multiplying the
height of every pulse by a factor of 1/(1+2k+ k2) when 2kQ 1 or a factor of
1/(1/2k+1+0·5k2) when 2ke 1, then the pulse sequence developed in section 4.3 is
exactly the same as the impulse shaper with robustness.

6. SIMULATION RESULTS AND DISCUSSION

In order to illustrate the effectiveness, robustness and efficiency of the pulse sequences
developed, some simulation results for the system are given. In addition to finding the time
taken for a move, other useful parameters such as the maximum vibration during the
movement Dxmax (Dxmax =max0E tE tf =Dx(t)= ) and the mean vibration during the movement,
Dx̄(Dx̄=(1/tf) ftf

0 =Dx(t)=dt) are also found.
In the simulations, the system with damping will be considered. The system parameters

used are as follows: natural frequency, vn =1·571 rad/s; damping ratio j=0·05;
maximum acceleration, amax =0·5 m/s2; and desired distance moved, Z=2·75 m. Two
types of proposed inputs are designed, the four-pulse without robustness and the six-pulse
with robustness. The inputs u(t) m/s2, the corresponding velocity profile v(t) m/s, the
position z(t) m and the vibration Dx(t) m for the two cases are plotted in Figures 10 and
11. For comparison, the inputs and responses of the impulse shaper method by Singer and
Seering [12] without and with robustness are plotted in Figures 12 and 13 respectively. The
times taken to complete the motion, mean vibration and maximum vibration of all the
methods are shown in Table 1.

To compare the efficiency of these pulse sequences with varying distance Z and damped
period T, the total time taken using these pulse sequences is plotted against Z and T and
given in Figures 14 and 15 respectively. The difference in the time taken between the
proposed methods and the impulse shaper method, for a varying damping ratio, is shown
in Figure 16.

The next set of simulations is carried out to give an indication of the robustness of the
proposed pulse sequences. Simulations are carried out assuming errors in the natural
frequency (vn ) used in the controller designs as compared to the actual natural frequency
of the system va . In Figure 17 is shown the maximum amplitude of residual vibration,
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Figure 10. The input and response of the proposed four-pulse sequence without robustness.

Emax (Emax =maxte tf =Dx(t)=) plotted against the ratio of the va /vn for up to 20% error in
the estimated natural frequency. As expected, the plots of the proposed pulse sequences,
as well as the impulse shaper’s method, are ‘‘notch-like’’ for the non-robust cases and much
‘‘flatter’’ for the robust cases. This indicates that the robust cases are much more insensitive
to modelling errors.

The above simulations clearly demonstrate that the proposed pulse sequences can move
the system without causing residual vibration when the model is exact and with very little
residual vibration when the model is not known exactly. In the latter case, pulse sequences
with robustness should be used. Although one can improve the insensitivity by
constraining the pulse sequence to satisfy the robustness conditions, one should also know
that, with the same system parameters, the pulse sequence that is more insensitive to errors
in the natural frequency or the damping ratio takes a longer time to finish the given task.

Figure 11. The input and response of the proposed six-pulse sequence with robustness



15

3

Time (s)

2

1

5 100

z 
(m

)

15

0.2

–0.2
0

0.1

0.0

–0.1

5 10

∆x
 (m

)

0.4

–0.4

0.2

0.0

–0.2

u 
(m

/s
2 )

0.5

0

0.3

0.2

0.1

ν 
(m

/s
)

0.4

15

3

Time (s)

2

1

5 100

z 
(m

)

15

0.10

–0.10
0

0.05

0.00

–0.05

5 10

∆x
 (m

)

0.4

–0.4

0.2

0.0

–0.2

u 
(m

/s
2 )

0.6

–0.2

0.4

0.2

0.0

ν 
(m

/s
)

   171

Figure 12. The input and response of the impulse shaper method without robustness.

Therefore, there is a trade-off between the shortest total time taken and the insensitivity
of a pulse sequence.

7. EXPERIMENTAL RESULTS

7.1.   -

To verify the effectiveness of our pulse sequences, some experiments were carried out
on a model of an overhead crane. This consists of a platform (cart) mounted on a
motorized linear guide moving in the horizontal direction with a cable and point load
attached. The platform is controlled by a IBM-compatible 486 computer in a closed loop
fashion, with encoder feedback to obtain the position of the cart. The experimental set-up
of the crane system is shown in Figure 18, and the block diagram for the
computer-controlled crane system is shown in Figure 19.

Figure 13. The input and response of the impulse shaper method with robustness.
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T 1

Comparison of proposed and impulse shaper method with j=0·05

Time Mean Maximum
taken, vibration, vibration,
tf (s) Dx̄ (m) Dxmax (m)

1 Four-pulse sequence without robustness 8·0 0·050 0·154
2 Six-pulse sequence with robustness 10·0 0·040 0·084
3 Impulse shaper method without robustness 8·5 0·047 0·143
4 Impulse shaper method with robustness 10·5 0·038 0·077

The oscillation or vibration of the point load is obtained using a Hamamatsu PSD
(Position Sensitive Detector). The PSD is an optoelectronic sensor that provides
continuous position data of the light spot travelling over its photosensitive surfaces. The
detector of the PSD is mounted on the cart, and the light source of the PSD is attached
at the end-point of the cable. When the light source attached to the cable vibrates with
the cable, there will be a voltage output from the PSD. The output is then sampled by
an AD converter and stored in the computer.

7.2.   

In the experiment, the acceleration pulse sequence is designed and converted to the
desired displacement profile by double integration. The displacement profile thus obtained
is then fed into the computer-controlled crane system as the reference input. The actual
displacement of the cart and the vibration are sampled and stored in the computer. By
differentiating the actual displacement profile with respect to time, the velocity profile can
be found; and by differentiating the actual velocity profile with respect to time, the
acceleration profile is obtained.

The system natural frequency and damping ratio are experimentally determined and
found to be vn =4·241 rad/s, while the damping ratio j=0. The other parameters of this
system due to the limitations of the motor and/or setup are as follows: amax =1·0 m/s2,

Figure 14. The total time taken tf versus distance Z for the different methods. — —, Four-pulse sequence
(non-robust); , six-pulse sequence (robust); — · —, impulse shaper (non-robust); ······, impulse shaper
(robust); ––, no preshaping.
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Figure 15. The total time taken versus damped period T for the different methods. — —, Four-pulse sequence
(non-robust); , six-pulse sequence (robust); — · —, impulse shaper (non-robust); ······, impulse shaper
(robust); ––, no preshaping.

Figure 16. The time difference between the proposed methods and the impulse shaper method versus the
damping ratio j when L4 =1 and L6 =1.

Figure 17. The maximum amplitude of residual vibration Emax versus va /vn for the various methods. — —,
Four-pulse sequence (non-robust); , six-pulse sequence (robust); — · —, impulse shaper (non-robust); ······,
impulse shaper (robust).



Linear guide Cart PSD Motor

Pendulum with load Computer

. .   .174

Figure 18. The experimental set-up of an overhead crane system.

Figure 19. The block diagram for the computer-controlled platform (cart).

Figure 20. The input and response of the proposed four-pulse sequence when vn =va (i.e., the actual and
design natural frequencies are equal).
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Figure 21. The input and response of the proposed six-pulse sequence when vn =va (i.e., the actual and design
natural frequencies are equal).

Vmax =0·5 m/s, Z=0·5 m. All of the pulse sequences are designed according to this set
of parameters. In the subsequent plots of the results, the theoretical results are represented
by the dashed lines and the experimental results are represented by the solid lines.

In the first set of experiments, the actual natural frequency of the system found by
experiment is used in the design of the pulse sequences. This means that the system model
is exact and no intentional modelling errors are introduced. Two types of input
sequences—namely, the four-pulse sequence without robustness and the six-pulse sequence
with robustness—are used. The plots of the position of the cart, z(t) m, the velocity profile
v(t) m/s, the acceleration u(t) m/s2 and the vibration of the end-point u(t) rad for the four
types of inputs are shown in Figures 20 and 21 respectively. It can be seen from the
figures that the theoretical displacement profile and the experimental displacement profile
of the cart are so close that it is almost impossible to distinguish the differences. The
experimental velocity profile and the acceleration profile, however, contain some noise,
which is understandable because they are obtained through differentiation. It is clear from
the figures that residual vibration after the motion is almost non-existent. It is also
observed that damped motion is achieved for the four pulse sequence without robustness,
and the six pulse sequence with robustness, as was designed. The experimentally
determined maximum vibration during motion (umax =max0E tE tf =u(t)=) and the time taken
for the motion are given in Table 2.

In order to illustrate the robustness of the proposed pulse sequences, the next set of
experiments were performed using an erroneous estimate of the system model. Here, by

T 2

Experimental results using proposed input sequences

Time taken, Maximum vibration,
tf (s) umax (rad)

1 Four-pulse sequence without robustness 1·991 0·112
2 Six-pulse sequence with robustness 2·731 0·0526
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Figure 22. The input and response of the proposed four-pulse sequence when vn $va (i.e., there is an error
in the actual and design natural frequencies).

changing the length of cable, the natural frequency of the actual system was changed to
va =3·980 rad/s, which is about 6% less than the design frequency (vn =4·241 rad/s). The
pulse sequence designed by using vn =4·241 rad/s was then used to drive the system, the
actual frequency of which va was 3·980 rad/s. In Figures 22 and 23 are shown the
theoretical and experimental results or our proposed pulse sequences when there is an error
in system design frequency (or modelling frequency) for the four-pulse without robustness
and the six-pulse with robustness. It can be seen that the six-pulse sequence with robustness
results in very little residual vibration, while the residual vibrations caused by the
four-pulse sequence without robustness are relatively large. The experimentally determined
maximum residual vibration for the various inputs is shown in Table 3.

Figure 23. The input and response of the proposed six-pulse sequence when vn $va (i.e., there is an error
in the actual and design natural frequencies).
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T 3

Amplitude of maximum residual vibration using proposed input sequences

Maximum residual vibration,
Emax (rad)

1 Four-pulse sequence without robustness 0·040
2 Six-pulse sequence with robustness 0·005

The experiments show that the maximum amplitude of the residual vibration is reduced
significantly (by an order of magnitude) for the pulse sequences with robustness as
compared to the pulse sequence without robustness when there are modelling errors. This
means that while the pulse sequences without robustness can be sensitive to the change
or shift of the system natural frequency (or damping ratio), the pulse sequences with
robustness are quite insensitive to the change or shift of the system natural frequency (or
damping ratio).

8. CONCLUSIONS

In this paper, it is shown that the use of pulse sequences as the shaped input for a
single-mode flexible system can significantly reduce the residual vibration while causing the
rigid body to perform a desired motion. It is also shown that some of the pulse sequences
developed possess some robustness to variations in the natural frequencies and damping
ratios of the systems. Inputs in the form of a four-pulse sequence without robustness and
a six-pulse sequence are developed. The shaped input method developed here is
straightforward and do not require measurements of the system’s states. Hence, it is direct
and easier to implement on actual systems. Simulations and experiments show that the
proposed method is easy to design and effective in implementation.
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